Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 18(11): 2418-2429, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37934063

RESUMO

Exo-enzymatic glycan labeling strategies have emerged as versatile tools for efficient and selective installation of terminal glyco-motifs onto live cell surfaces. Through employing specific enzymes and nucleotide-sugar probes, cells can be equipped with defined glyco-epitopes for modulating cell function or selective visualization and enrichment of glycoconjugates. Here, we identifyCampylobacter jejunisialyltransferase Cst-II I53S as a tool for cell surface glycan modification, expanding the exo-enzymatic labeling toolkit to include installation of α2,8-disialyl epitopes. Labeling with Cst-II was achieved with biotin- and azide-tagged CMP-Neu5Ac derivatives on a model glycoprotein and native sialylated cell surface glycans across a panel of cell lines. The introduction of modified Neu5Ac derivatives onto cells by Cst-II was also retained on the surface for 6 h. By examining the specificity of Cst-II on cell surfaces, it was revealed that the α2,8-sialyltransferase primarily labeled N-glycans, with O-glycans labeled to a lesser extent, and there was an apparent preference for α2,3-linked sialosides on cells. This approach thus broadens the scope of tools for selective exo-enzymatic labeling of native sialylated glycans and is highly amenable for the construction of cell-based arrays.


Assuntos
Polissacarídeos , Sialiltransferases , Sialiltransferases/metabolismo , Membrana Celular/metabolismo , Polissacarídeos/metabolismo , Glicoconjugados , Epitopos
2.
Glycobiology ; 33(11): 888-910, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-37956415

RESUMO

All cells are decorated with complex carbohydrate structures called glycans that serve as ligands for glycan-binding proteins (GBPs) to mediate a wide range of biological processes. Understanding the specific functions of glycans is key to advancing an understanding of human health and disease. However, the lack of convenient and accessible tools to study glycan-based interactions has been a defining challenge in glycobiology. Thus, the development of chemical and biochemical strategies to address these limitations has been a rapidly growing area of research. In this review, we describe the use of glycosyltransferases (GTs) as versatile tools to facilitate a greater understanding of the biological roles of glycans. We highlight key examples of how GTs have streamlined the preparation of well-defined complex glycan structures through chemoenzymatic synthesis, with an emphasis on synthetic strategies allowing for site- and branch-specific display of glyco-epitopes. We also describe how GTs have facilitated expansion of glyco-engineering strategies, on both glycoproteins and cell surfaces. Coupled with advancements in bioorthogonal chemistry, GTs have enabled selective glyco-epitope editing of glycoproteins and cells, selective glycan subclass labeling, and the introduction of novel biomolecule functionalities onto cells, including defined oligosaccharides, antibodies, and other proteins. Collectively, these approaches have contributed great insight into the fundamental biological roles of glycans and are enabling their application in drug development and cellular therapies, leaving the field poised for rapid expansion.


Assuntos
Glicosiltransferases , Polissacarídeos , Humanos , Glicosiltransferases/metabolismo , Glicosilação , Polissacarídeos/química , Glicoproteínas/metabolismo , Glicômica
3.
ACS Chem Biol ; 18(2): 223-229, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36599132

RESUMO

While bacterial natural products are a valuable source of therapeutics, the molecules produced by most biosynthetic gene clusters remain unknown. Tambjamine YP1, produced by Pseudoalteromonas tunicata, is partially derived from fatty acids siphoned from primary metabolism. A structurally similar tambjamine produced by Streptomyces, BE-18591, had not been linked to a gene cluster. Using enzymes putatively implicated in the construction of these two tambjamines, we used sequence similarity networks and gene knockout experiments to identify the biosynthetic gene cluster responsible for the production of tambjamine BE-18591 in Streptomyces albus. Despite the structural similarities between YP1 and BE-18591, the biosynthesis of the alkylamine tails of these molecules differs significantly, with the S. albus gene cluster putatively encoding a dedicated system for the construction of the fatty acid precursor to BE-18591. These different pathways in Pseudoalteromonas and Streptomyces suggest that evolutionary convergence is operative, with similar selective pressures leading to the emergence of structurally similar tambjamine natural products using different biosynthetic logic.


Assuntos
Produtos Biológicos , Streptomyces , Produtos Biológicos/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Família Multigênica
4.
Bioconjug Chem ; 33(5): 773-780, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35426312

RESUMO

Tools to interrogate glycoconjugate-protein interactions in the context of living cells are highly attractive for the identification of critically important functional binding partners of glycan-binding proteins. These interactions are challenging to study due to the low affinity and rapid dissociation rates of glycan-protein binding events. The use of photo-cross-linkers to capture glycan-protein interaction complexes has shown great promise for identifying binding partners involved in these interactions. Current methodologies use metabolic oligosaccharide engineering (MOE) to incorporate photo-cross-linking sugars. However, these MOE strategies are not amenable to all cell types and can result in low incorporation and cell-surface display of the photo-cross-linking probe, limiting their utility for studying many types of interactions. We describe here an exo-enzymatic strategy for selectively introducing photo-cross-linking probes into cell-surface glycoconjugates using the recombinant human sialyltransferase ST6GAL1 and a diazirine-linked CMP-Neu5Ac derivative. Probe introduction is highly efficient, amenable to different cell types, and resulted in improved cross-linking when compared to MOE. This exo-enzymatic labeling approach can selectively introduce the photo-cross-linking sugar onto specific glycan epitopes and subclasses by harnessing the specificity of the sialyltransferase employed, underscoring its potential as a tool to interrogate and identify glycoconjugate ligands for diverse glycan-binding proteins.


Assuntos
Diazometano , Sialiltransferases , Reagentes de Ligações Cruzadas/química , Diazometano/química , Glicoconjugados/química , Humanos , Polissacarídeos/química , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...